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ABSTRACT

A pair matrix equation is a matrix system that contains two matrix
equations which is solved simultaneously to obtain its solution. In this
study, an algorithm for obtaining the positive fuzzy solution of positive
pair fully fuzzy matrix equation is proposed. The constructed algorithm
utilizes fuzzy Kronecker product and fuzzy V ec-operator to transform
pair fully fuzzy matrix equation into fully fuzzy linear system. Then,
an associated linear system is used to reach the final solution. Necessary
theorems, corollary and numerical example are presented to illustrate the
proposed algorithm.
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1. Introduction

In many applications, there exist situations where the crisp numbers are less
adequate to represent the uncertainty, vagueness and ambiguity of
information. In this case, fuzzy numbers plays a prominent role to model
the fuzzy environment.

The past few decades have seen a growing trend towards the matrix
equations in the fuzzy environment. There are fuzzy matrix equation (FME)
of AX̃m = B̃m (Guo and Gong, 2010), fully fuzzy matrix equation (FFME)
of ÃX̃m = B̃m (Otadi and Mosleh, 2012), fuzzy Sylvester matrix equation
(FSE) of AX̃ + X̃B = C̃ (Araghi and Hosseinzadeh, 2012, Guo, 2011, Guo
and Bao, 2013, Guo and Shang, 2012, 2013, Salkuyeh, 2010) and also fully
fuzzy Sylvester matrix equation of ÃX̃+X̃B̃ = C̃ (Malkawi et al., 2015, Shang
et al., 2015) and ÃX̃− X̃B̃ = C̃ (Daud et al., 2018b, Dookhitram et al., 2015).
This considerable amount of literature have shown that, fuzzy set theory plays
a significant role to model the matrix equations. It is undeniable that, the
previous proposed methods demonstrated various significant contribution in
solving the matrix equation in fuzzy environment. However, there are still
many gaps that can be filled in this area.

This study aims to construct a new algorithm for solving a positive pair fully
fuzzy matrix equation (PFFME). Basically, a pair matrix equation is a matrix
system that contains two matrix equations which are solved simultaneously
to obtain its solution. These equations are important in real application for
example in control theory (Asari and Amirfakhrian, 2016). Previously, a study
was carried out by Sadeghi et al. (2011), which proposed a significant knowledge
in solving fuzzy pair matrix equation of A1X̃ + X̃B1 = C̃1 and A2X̃B2 = C̃2,
where A1, B1, A2, B2 are known crisp matrices, C̃1, C̃2 are known fuzzy matrices
and X̃ is unknown fuzzy matrices.

Contrary to this study, two fully fuzzy matrix equations are solved
simultaneously, which are fully fuzzy continuous-time Sylvester matrix equation
of

ÃX̃ + X̃B̃ = C̃ (1)

and also fully fuzzy discrete-time Sylvester matrix equation of

ÃX̃B̃ − X̃ = C̃. (2)

Thus, a pair fully fuzzy matrix equation is given by{
Ã1X̃ + X̃B̃1 = C̃1

Ã2X̃B̃2 − X̃ = C̃2

(3)
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where Ã1, Ã2 and B̃1, B̃2 represents p × p and q × q positive fuzzy
matrices respectively, C̃1 and C̃2 are p× q arbitrary fuzzy matrices, and X̃ is a
p× q positive fuzzy solution. This study utilizes fuzzy Kronecker product and
fuzzy V ec-operator in converting the equation into a fully fuzzy linear system.
In addition, the associated linear system based on (Malkawi et al., 2014) is
adapted in obtaining the final solution. Overall, this study provides valuable
contribution in finding the solution of PFFME, and, at the same time advances
the understanding in theory of fuzzy sets and matrices.

The remaining part of the paper proceeds as follows. In Section 2, the
fundamental concept of fuzzy set theory and Kronecker operation are provided.
In Section 3, the algorithm for solving the PFFME is shown. Later on, a
numerical example is illustrated in Section 4 followed by the conclusion in
Section 5.

2. Preliminaries

In this section, some definitions and theorems used in this study are recalled.

Definition 2.1. (Zadeh, 1965) A fuzzy number is a function such as
u : R→ [0, 1] satisfying the following properties:

1. u is normal, that is, there exist an x0 ∈ R such that u(x0) = 1;

2. u is fuzzy convex, that is u(λx + (1 − λ)y) ≥ min{u(x), u(y)} for any
x, y ∈ R, λ ∈ [0, 1];

3. u is upper semicontinuous;

4. supp u = {x ∈ R|u(x) > 0} is the support of u, and its closure
cl(supp u) is compact.

Definition 2.2. A fuzzy number M̃ = (m,α, β) is said to be a triangular fuzzy
number (TFN), if its membership function is given by:

µM̃ (x) =


1− m−x

α , m− α ≤ x ≤ m,α > 0,

1− x−m
β , m ≤ x ≤ m+ β, β > 0,

0, otherwise.
(4)

In this case, m is the mean value of M̃ , whereas α and β are right and left
spreads, respectively.
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Definition 2.3. (Dubois and Prade, 1978) The arithmetic operations of two
fuzzy numbers M̃ = (m,α, β) and Ñ = (n, γ, δ), are as follows:

1. Addition:

M̃ ⊕ Ñ = (m,α, β)⊕ (n, γ, δ) = (m+ n, α+ γ, β + δ) (5)

2. Opposite:
− M̃ = −(m,α, β) = (−m,β, α) (6)

3. Subtraction:

M̃ 	 Ñ = (m,α, β)	 (n, γ, δ) = (m− n, α+ δ, β + γ) (7)

4. Multiplication:

M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn,mγ + nα,mδ + nβ) (8)

Definition 2.4. (Dehghan et al., 2006) An n × n fully fuzzy linear system
(FFLS) is defined as follows.

ã11x̃1 + ã12x̃2 + ...+ ã1nx̃n = b̃1

ã21x̃1 + ã22x̃2 + ...+ ã2nx̃n = b̃2
...

ãm1x̃1 + ãm2x̃2 + ...+ ãmnx̃n = b̃m

(9)

which can also be written in a matrix form of
ã11 ã12 . . . ã1n
ã21 ã22 . . . ã2n
...

...
. . .

...
ãm1 ãm2 . . . ãmn



x̃1
x̃2
...
x̃n

 =


b̃1
b̃2
...
b̃m

 , (10)

and it is usually denoted in a form of

ÃX̃ = B̃. (11)

Definition 2.5. (Dehghan et al., 2006) A positive fuzzy number X̃ = (x, y, z)
where x, y, z ≥ 0 be the solution of FFLS, ÃX̃ = B̃, which Ã = (A,M,N) ≥ 0
and B̃ = (b, h, g) ≥ 0 iff 

Ax = b

Ay +Mx = h

Az +Nx = g.

(12)
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Theorem 2.1. (Malkawi et al., 2014) A system of linear equation

SX = B, (13)

is an associated linear system of the FFLS, ÃX̃ = B̃, where

S =

A 0 0
M A 0
N 0 A

 , X =

xy
z

 , B =

bh
g

 , (14)

with A,M and N are square matrices in common size of n, whereas x, y, z, b, h
and g are vectors of n components.

Theorem 2.2. (Malkawi et al., 2014) The block matrix S in Eq.(14) is
non-singular if and only if the matrix A is non-singular.

Theorem 2.3. (Malkawi et al., 2014) The unique solutions of ÃX̃ = B̃ and
SX = B are equivalent.

Definition 2.6. (Malkawi et al., 2015) A matrix (A)ij is called as a positive
matrix when all its elements are greater than zero, Ai,j > 0, ∀i, j.

The following definitions and theorems elaborates the Kronecker properties and
V ec-operator, (see Malkawi et al. (2015)).

Definition 2.7. Let Ã = (ãij)m×m and B̃ = (b̃ij)n×n be fuzzy matrices. Fuzzy
Kronecker product is represented as Ã⊗k B̃ with the operation

Ã⊗k B̃ =


ã11B̃ ã12B̃ . . . ã1nB̃

ã21B̃ ã22B̃ . . . ã2nB̃
...

...
. . .

...
ãn1B̃ ãn2B̃ . . . ãmnB̃

 . (15)

Definition 2.8. V ec-operator of a fuzzy matrix is a linear transformation that
converts the fuzzy matrix of C̃ = (c̃1, c̃2, ..., c̃n) into a column vector as

V ec(C̃) =


c̃1
c̃2
...
c̃n

 . (16)

Theorem 2.4. If Ã = (ãij)m×m be a fuzzy matrix, and Ũ = (ũij)p×p is a
unitary fuzzy matrix defined as

Ũ =


(1, 0, 0) (0, 0, 0) . . . (0, 0, 0)
(0, 0, 0) (1, 0, 0) . . . (0, 0, 0)

...
...

. . .
...

(0, 0, 0) (0, 0, 0) . . . (1, 0, 0)

 , (17)
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then

1. ÃŨ = Ũ Ã = Ã

2. ŨT = Ũ .

Theorem 2.5. Let Ã = (ãij)m×m, B̃ = (b̃ij)n×n and X̃ = (x̃ij)m×n, then by
using Kronecker product and V ec-operator, the equation of ÃX̃+ X̃B̃ = C̃ can
be rewritten as

[(Ũn ⊗k Ã) + (B̃T ⊗k Ũm)]V ec(X̃) = V ec(C̃)

where Ũm and Ũn denotes the fuzzy identity matrices with order m and n,
respectively.

Theorem 2.6. (Daud et al., 2018a) Let Ã = (ãij)m×m, B̃ = (b̃ij)n×n and
X̃ = (x̃ij)m×n, then by using Kronecker product and V ec-operator, the equation
of ÃX̃B̃ − X̃ = C̃ can be rewritten as

[(B̃T ⊗k Ã)− Ũmn]V ec(X̃) = V ec(C̃),

where Ũmn denotes the fuzzy identity matrix with order m× n.

3. Theoretical Foundations

In this section, theoretical foundations are built which lead to the
development of the algorithm in solving the PFFME.

Theorem 3.1. The fuzzy coefficient Ã1 and B̃1 for the fully fuzzy matrix
equation as shown in Eq.(1) must be square matrices.

Proof. Let
(Ã1)n×nX̃n×p + X̃n×p(B̃1)p×p = C̃n×p

(Ã1X̃)n×p + (X̃B̃1)n×p = C̃n×p

be the fully fuzzy matrix equation as shown in Eq.(1), where Ã1 and B̃1 are
fuzzy coefficients and X̃n×p is the fuzzy solution. If the fuzzy coefficents Ã1

and B̃1 are non-square with order (Ã1)m×n and (B̃1)p×q, and the solution is
X̃n×p, then

(Ã1)m×nX̃n×p + X̃n×p(B̃1)p×q

(Ã1X̃)m×p + (X̃B̃1)n×q.
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However, the addition of (Ã1X̃)m×p and (X̃B̃1)n×q is invalid due to the
difference in sizes. Thus, in all cases, Ã1 and B̃1 must be square matrices.

Theorem 3.2. The fuzzy coefficient Ã2 and B̃2 for the fully fuzzy matrix
equation as shown in Eq.(2) must be square matrices.

Proof. Let
(Ã2)n×nX̃n×p(B̃2)p×p − X̃n×p = C̃n×p

(Ã2X̃B̃2)n×p − X̃n×p = C̃n×p

be the fully fuzzy matrix equation as shown in Eq.(2), where Ã2 and B̃2 are
fuzzy coefficients and X̃n×p is the fuzzy solution. If the fuzzy coefficents Ã2

and B̃2 are non-square with order (Ã2)r×n and (B̃2)p×s, and the solution is
X̃n×p, then

(Ã2)r×nX̃n×p(B̃2)p×s − X̃n×p

(Ã2X̃B̃2)r×s − X̃n×p.

However, the subtraction of (Ã2X̃B̃2)n×s and X̃n×p is invalid due to the
difference in sizes. Thus, in all cases, Ã2 and B̃2 must be square matrices.

Corollary 3.1. Let Ã1 = (ã1ij)p×p, Ã2 = (ã2ij)p×p and B̃1 = (b̃1ij)q×q,
B̃2 = (b̃2ij)q×q, and X̃ = (x̃ij)p×q. A pair fully fuzzy matrix equation (PFFME)
as in Eq.(3) can be expressed in the form{

(Ũq ⊗k Ã1) + (B̃T1 ⊗k Ũp)X̃v = C̃v1

(B̃T2 ⊗k Ã2)− Ũpq)X̃v = C̃v2
(18)

where
C̃v1 = V ec(C̃1); C̃v2 = V ec(C̃2); X̃v = V ec(X̃).

Proof. The proof follows from Theorem 2.5 and 2.6.

4. Solution for Positive PFFME

Now, the algorithm for finding the solution X̃ = (mx, αx, βx) of PFFME is
outlined.
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Step 1: Transforming the PFFME to pair FFLS.

Considering Corollary 3.1, let{
(Ũq ⊗k Ã1) + (B̃T1 ⊗k Ũp) = L̃1

(B̃T2 ⊗k Ã2)− Ũpq = L̃2,
(19)

then an equation of pair FFLS is given by{
L̃1X̃v = C̃v1

L̃2X̃v = C̃v2,
(20)

Step 2: Converting the equation of pair FFLS in a form of associated linear
system.

The conversion of pair FFLS in Eq.(20) is done separately due to
distraction of the fuzzy operators. The addition property fails on both fuzzy
coefficients L̃1 and L̃2. Thus, considering the fuzzy numbers, L̃1 = (F1,M1, N1),
L̃2 = (F2,M2, N2), C̃v1 = (mc1 , αc1 , βc1), C̃v2 = (mc2 , αc2 , βc2) and
X̃v = (mx, αx, βx), the equation can be rewritten as{

(F1,M1, N1)(m
x, αx, βx) = (mc1 , αc1 , βc1)

(F2,M2, N2)(m
x, αx, βx) = (mc2 , αc2 , βc2).

By fuzzy arithmetic multiplication, we obtain

F1m
x = mc1

F1α
x +M1m

x = αc1

F1β
x +N1m

x = βc1

F2m
x = mc2

F2α
x +M2m

x = αc2

F2β
x +N2m

x = βc2 ,

which can be rearranged as follows

F1m
x = mc1

F2m
x = mc2

F1α
x +M1m

x = αc1

F2α
x +M2m

x = αc2

F1β
x +N1m

x = βc1

F2β
x +N2m

x = βc2 .
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Since (F1,M1, N1), (m
c1 , αc1 , βc1) and (F2,M2, N2), (m

c2 , αc2 , βc2) have similar
common sizes respectively, it follows that

(F1 + F2)m
x = (mc1 +mc2)

(F1 + F2)α
x + (M1 +M2)m

x = (αc1 + αc2)

(F1 + F2)β
x + (N1 +N2)m

x = (βc1 + βc2).

(21)

By assuming that the sum of two positive coefficient matrices are positive,
we can let F1 + F2 = F,M1 + M2 = M,N1 + N2 = N,mc1 + mc2 = mc,
αc1 + αc2 = αc and βc1 + βc2 = βc. Therefore, Eq.(21) can be simplified into

Fmx = mc

Fαx +Mmx = αc

Fβx +Nmx = βc.

(22)

Step 3: Composing the system in Eq.(22) to be an associated linear system of

F 0 0
M F 0
N 0 F

mx

αx

βx

 =

mc

αc

βc

 (23)

where,

F =

m
F1
11 +mF2

11 . . . mF1
1q +mF2

1q
...

. . .
...

mF1
p1 +mF2

p1 . . . mF1
pq +mF2

pq

 , M =

α
F1
11 + αF2

11 . . . αF1
1q + αF2

1q
...

. . .
...

αF1
p1 + αF2

p1 . . . αF1
pq + αF2

pq

 ,

N =

β
F1
11 + βF2

11 . . . βF1
1q + βF2

1q
...

. . .
...

βF1
p1 + βF2

p1 . . . βF1
pq + βF2

pq

 ,

mc =

m
c1
11 +mc2

11
...

mc1
pq +mc2

pq

 ; αc =

α
c1
11 + αc211

...
αc1pq + αc2pq

 ; βc =

βc111 + βc211
...

βc1pq + βc2pq;



mx =

m
x
11
...

mx
pq

 ; αx =

α
x
11
...
αxpq

 ; βx

β
x
11
...
βxpq

 .
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Since PFFME can be converted to an associated linear system as in Eq.(23)
and the solutions of the associated linear system is equivalent to the solutions
of ÃX̃ = C̃ (according to Theorem 2.3), it follows that the solutions of Eq.(23)
is also equivalent to the solutions of PFFME. In order to obtain the solutions of
Eq.(23), any classical linear algebra method such as inverse method, Cramers’
rule, Gaussian elimination, LU decomposition or the iterative methods can be
applied. In this paper, we implemented the inversion method.

Therefore,

mx

αx

βx

 =

F 0 0
M F 0
N 0 F

−1mc

αc

βc

 (24)

which is,

mx

αx

βx

 =



m
x
11
...

mx
pq


α

x
11
...
αxpq


β

x
11
...
βxpq




.

Thus, the solution is given by

X̃ =

(mx
11, α

x
11, β

x
11) . . . (mx

1q, α
x
1q, β

x
1q)

...
. . .

...
(mx

p1, α
x
p1, β

x
p1) . . . (mx

pq, α
x
pq, β

x
pq)

 .

Remark 4.1. The fuzzy solution obtained is a unique fuzzy solution if and
only if the matrix F1 + F2 in Eq.(21) is non-singular, which directly follows
from Theorem 2.2.
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5. Numerical Example

Example 5.1. Consider the pair fully fuzzy matrix equation,{
Ã1X̃ + X̃B̃1 = C̃1

Ã2X̃B̃2 − X̃ = C̃2

where

Ã1 =

(
(8, 4, 7) (5, 4, 5)
(9, 6, 1) (7, 2, 7)

)
Ã2 =

(
(5, 1, 1) (6, 1, 2)
(7, 1, 0) (4, 0, 1)

)

B̃1 =

(6, 6, 7) (5, 4, 3) (7, 2, 3)
(9, 3, 2) (7, 1, 7) (5, 3, 1)
(8, 5, 3) (5, 2, 3) (1, 1, 7)


B̃2 =

(6, 2, 3) (5, 1, 3) (7, 1, 3)
(9, 3, 2) (7, 1, 7) (6, 3, 1)
(8, 1, 3) (9, 2, 3) (10, 1, 7)


C̃1 =

(
(259, 316, 349) (195, 214, 253) (193, 237, 286)
(241, 307, 386) (180, 230, 228) (208, 269, 274)

)
C̃2 =

(
(1635, 1880, 2132) (1537, 1711, 2251) (1725, 1884, 2507)
(1713, 1783, 1780) (1613, 1628, 1979) (1787, 1783, 2179)

)

and

X̃ =

(
(mx

11, α
x
11, β

x
11) (mx

12, α
x
12, β

x
12) (mx

13, α
x
13, β

x
13)

(mx
21, α

x
21, β

x
21) (mx

22, α
x
22, β

x
22) (mx

23, α
x
23, β

x
23)

)
≥ 0 (25)

Solution:

Step 1: The PFFME is transformed to FFLS according to its Kronecker
properties.
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(Ũ3 ⊗k Ã1) + (B̃T1 ⊗k Ũ2) =
(14, 10, 14) (5, 4, 5) (9, 3, 2) (0, 0, 0) (8, 5, 3) (0, 0, 0)
(9, 6, 1) (13, 8, 14) (0, 0, 0) (9, 3, 2) (0, 0, 0) (8, 5, 3)
(5, 4, 3) (0, 0, 0) (15, 5, 14) (5, 4, 5) (5, 2, 3) (0, 0, 0)
(0, 0, 0) (5, 4, 3) (9, 6, 1) (14, 3, 14) (0, 0, 0) (5, 2, 3)
(7, 2, 3) (0, 0, 0) (5, 3, 1) (0, 0, 0) (9, 5, 14) (5, 4, 5)
(0, 0, 0) (7, 2, 3) (0, 0, 0) (5, 3, 1) (9, 6, 1) (8, 3, 14)

 ,

V ec(C̃1) =
(259, 316, 349)
(241, 307, 386)
(195, 214, 253)
(180, 230, 228)
(193, 237, 286)
(208, 269, 274)



and

(B̃T2 ⊗k Ã2)− Ũ6 =
(29, 16, 21) (36, 18, 30) (45, 24, 19) (54, 27, 30) (40, 13, 23) (48, 14, 34)
(42, 20, 21) (23, 8, 18) (63, 30, 14) (36, 12, 17) (56, 15, 21) (32, 4, 20)
(25, 10, 20) (30, 11, 28) (34, 12, 42) (42, 13, 56) (45, 19, 24) (54, 21, 36)
(35, 12, 21) (20, 4, 17) (49, 14, 49) (27, 4, 35) (63, 23, 21) (36, 8, 21)
(35, 12, 22) (42, 13, 32) (30, 21, 11) (36, 24, 18) (49, 15, 45) (60, 16, 62)
(49, 14, 21) (28, 4, 19) (42, 27, 7) (24, 12, 10) (70, 17, 49) (39, 4, 38)

 ,

V ec(C̃2) =
(1635, 1880, 2132)
(1713, 1783, 1780)
(1537, 1711, 2251)
(1613, 1628, 1979)
(1725, 1884, 2507)
(1787, 1783, 2179)

 .

Step 2: In order to achieve an associated linear system, all matrices
obtained in previous step need to be converted to crisp form of matrices. Then,
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(Ũ3 ⊗k Ã1) + (B̃T1 ⊗k Ũ2) yields

F1 =


14 5 9 0 8 0
9 13 0 9 0 8
5 0 15 5 5 0
0 5 9 14 0 5
7 0 5 0 9 5
0 7 0 5 9 8

 ,M1 =


10 4 3 0 5 0
6 8 0 3 0 5
4 0 5 4 2 0
0 4 6 3 0 2
2 0 3 0 5 4
0 2 0 3 6 3

 , N1 =


14 5 2 0 3 0
1 14 0 2 0 3
3 0 14 5 3 0
0 3 1 14 0 3
3 0 1 0 14 5
0 3 0 1 1 14


and V ec(C̃1) yields

mc1 =


259
241
195
180
193
208

 , αc1 =


316
307
214
230
237
269

 , βc1 =


349
386
253
228
286
274

 .

On the other hand, the crisp matrices extracted from (B̃T2 ⊗k Ã2)− Ũ6 yields

F2 =


29 36 45 54 40 48
42 23 63 36 56 32
25 30 34 42 45 54
35 20 49 27 63 36
35 42 30 36 49 60
49 28 42 34 70 39

 ,M2 =


16 18 24 27 13 14
20 8 30 12 15 4
10 11 12 13 19 21
12 4 14 4 23 8
12 13 21 24 15 16
14 4 27 12 17 4

 ,

N2 =


21 30 19 30 23 34
21 18 14 17 21 20
20 28 42 56 24 36
21 17 49 35 21 21
22 32 11 18 45 62
21 19 7 10 49 38

 ,

and V ec(C̃2) yields

mc2 =


1635
1713
1537
1613
1725
1787

 , αc2 =


1880
1783
1711
1628
1884
1783

 , βc2 =


2132
1780
2251
1979
2507
2179

 .
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Thus, Eq.(22) can be written as follows
43 41 54 54 48 48
51 36 63 45 56 40
30 30 49 47 50 54
35 25 58 41 63 41
42 42 35 36 58 65
49 35 42 29 79 47




mx

11

mx
21

mx
12

mx
22

mx
13

mx
23

 =


1894
1954
1732
1793
1918
1995



26 22 27 27 18 14
26 16 30 15 15 9
14 11 17 17 21 21
12 8 20 7 23 10
14 13 24 24 20 20
14 6 27 15 23 7




αx11
αx21
αx12
αx22
αx13
αx23

+


43 41 54 54 48 48
51 36 63 45 56 40
30 30 49 47 50 54
35 25 58 41 63 41
42 42 35 36 58 65
49 35 42 29 79 47




mx

11

mx
21

mx
12

mx
22

mx
13

mx
23

 =


2196
2090
1925
1858
2121
2052



25 25 21 30 26 34
22 32 14 19 21 23
23 28 56 61 27 36
21 20 50 49 21 24
25 32 12 18 59 67
21 22 7 11 50 52




βx11
βx21
βx12
βx22
βx13
βx23

+


43 41 54 54 48 48
51 36 63 45 56 40
30 30 49 47 50 54
35 25 58 41 63 41
42 42 35 36 58 65
49 35 42 29 79 47




mx

11

mx
21

mx
12

mx
22

mx
13

mx
23

 =


2481
2166
2504
2207
2793
2453

 .

Step 3: A crisp matrix equation is obtained from Eq.(23) as follows

43 41 54 54 48 48 0 0 0 0 0 0 0 0 0 0 0 0
51 36 63 45 56 40 0 0 0 0 0 0 0 0 0 0 0 0
30 30 49 47 50 54 0 0 0 0 0 0 0 0 0 0 0 0
35 25 58 41 63 41 0 0 0 0 0 0 0 0 0 0 0 0
42 42 35 36 58 65 0 0 0 0 0 0 0 0 0 0 0 0
49 35 42 29 79 47 0 0 0 0 0 0 0 0 0 0 0 0
26 22 27 27 18 14 43 41 54 54 48 48 0 0 0 0 0 0
26 16 30 15 15 9 51 36 63 45 56 40 0 0 0 0 0 0
14 11 17 17 21 21 30 30 49 47 50 54 0 0 0 0 0 0
12 8 20 7 23 10 35 25 58 41 63 41 0 0 0 0 0 0
14 13 24 24 20 20 42 42 35 36 58 65 0 0 0 0 0 0
14 6 27 15 23 7 49 35 42 29 79 47 0 0 0 0 0 0
25 25 21 30 26 34 0 0 0 0 0 0 43 41 54 54 48 48
22 32 14 19 21 23 0 0 0 0 0 0 51 36 63 45 56 40
23 28 56 61 27 36 0 0 0 0 0 0 30 30 49 47 50 54
21 20 50 49 21 24 0 0 0 0 0 0 35 25 58 41 63 41
25 32 12 18 59 67 0 0 0 0 0 0 42 42 35 36 58 65
21 22 7 11 50 52 0 0 0 0 0 0 49 35 42 29 79 47





mx
11

mx
21

mx
12

mx
22

mx
13

mx
23

αx11
αx21
αx12
αx22
αx13
αx23
βx11
βx21
βx12
βx22
βx13
βx23



=



1894
1954
1732
1793
1918
1995
2196
2090
1925
1858
2121
2052
2481
2166
2504
2207
2793
2453



.
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Therefore,

X =



43 41 54 54 48 48 0 0 0 0 0 0 0 0 0 0 0 0
51 36 63 45 56 40 0 0 0 0 0 0 0 0 0 0 0 0
30 30 49 47 50 54 0 0 0 0 0 0 0 0 0 0 0 0
35 25 58 41 63 41 0 0 0 0 0 0 0 0 0 0 0 0
42 42 35 36 58 65 0 0 0 0 0 0 0 0 0 0 0 0
49 35 42 29 79 47 0 0 0 0 0 0 0 0 0 0 0 0
26 22 27 27 18 14 43 41 54 54 48 48 0 0 0 0 0 0
26 16 30 15 15 9 51 36 63 45 56 40 0 0 0 0 0 0
14 11 17 17 21 21 30 30 49 47 50 54 0 0 0 0 0 0
12 8 20 7 23 10 35 25 58 41 63 41 0 0 0 0 0 0
14 13 24 24 20 20 42 42 35 36 58 65 0 0 0 0 0 0
14 6 27 15 23 7 49 35 42 29 79 47 0 0 0 0 0 0
25 25 21 30 26 34 0 0 0 0 0 0 43 41 54 54 48 48
22 32 14 19 21 23 0 0 0 0 0 0 51 36 63 45 56 40
23 28 56 61 27 36 0 0 0 0 0 0 30 30 49 47 50 54
21 20 50 49 21 24 0 0 0 0 0 0 35 25 58 41 63 41
25 32 12 18 59 67 0 0 0 0 0 0 42 42 35 36 58 65
21 22 7 11 50 52 0 0 0 0 0 0 49 35 42 29 79 47



−1

1894
1954
1732
1793
1918
1995
2196
2090
1925
1858
2121
2052
2481
2166
2504
2207
2793
2453



which gives

X =



6
8
7
3
9
7
2
6
4
3
8
5
7
9
1
5
4
2



or X =




mx

11

mx
21

mx
12

mx
22

mx
13

mx
23


αx11
αx21
αx12
αx22
αx13
αx23


βx11
βx21
βx12
βx22
βx13
βx23





=




6
8
7
3
9
7


2
6
4
3
8
5


7
9
1
5
4
2




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Hence, the fuzzy solution is given by

X̃ =

(
(mx

11, α
x
11, β

x
11) (mx

12, α
x
12, β

x
12) (mx

13, α
x
13, β

x
13)

(mx
21, α

x
21, β

x
21) (mx

22, α
x
22, β

x
22) (mx

23, α
x
23, β

x
23)

)
=

(
(6, 2, 7) (7, 4, 1) (9, 8, 4)
(8, 6, 9) (3, 3, 5) (7, 5, 2)

)
.

6. Conclusion

This study has constructed an algorithm for solving the PFFME, where
the coefficients and the solution X̃ are positive fuzzy numbers. The pro-
posed algorithm utilizes the fuzzy Kronecker product, fuzzy V ec-operator and
also associated linear system approach in obtaining the solution, which is the
main contribution of this study. The associated linear system transforms
the fully fuzzy linear system to crisp linear system. The final solution is
obtained by applying any method of crisp linear system. As a result, the
proposed algorithm provides a new significant contribution in this particular
area. In future, our proposed algorithm can be modified to solve negative,
near-zero and mixed type of fuzzy coefficient, which is more representable for
real applications.
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